ORIGINIAL ARTICLE
EVALUATION OF HEPATOTOXIC AND NEPHROTOXIC EFFECTS
AFTER 2 WEEKS TREATMENT OF PIROXICAM SULFONATED
DERIVATIVES IN ALBINO RATS

Ghazala Shaheen, Syed Hamid Habib*, Syeda Huma Khizar, Safiullah**,
Muhammad Omar Malik*, Naeem Khan**, Shafique Ahmad Tariq*
Khyber Medical University Institute of Medical Sciences, Kohat, *Institute of Basic Medical Sciences, Khyber Medical University Peshawar,
**Drug Control Health Department Khyber Pakhtunkhwa, Peshawar, Pakistan

Background: New pharmacotherapy with good efficacy and less side effects is required for
management of pain. Use of Piroxicam is associated with side effects. Sulfonated piroxicam derivatives
(SPD) have been introduced to minimized adverse effects associated with its use. In this study we aim
to find hepatotoxic and nephrotoxic effects of SPD in Albino rats after 14 days of treatment. Methods:
This was an experimental study carried out at the Institute of Basic Medical Sciences, Khyber Medical
University Peshawar. Healthy 24 albino rats were divided into 5 groups. One control group and four
experimental groups having two compounds (compound I and II) in a dose of 10 mg/Kg and 20 mg/Kg
respectively were administered for 14 days. Blood was obtained for liver function tests (LFTs) and
renal function tests (RFTs). Furthermore, histology of liver and kidney were performed after sacrificing
rats. Results: Data was analysed with SPSS using one way ANOVA with post hoc analysis. Among
the LFTs alkaline phosphatase values were significantly high for compound II when used in the
20mg/kg concentration than control (348IU/L vs 210.25IU/L, p=0.004). The Alanine aminotransferase
and aspartate aminotransferase concentrations were not significantly different between the groups
(p=0.14, p=0.21 respectively). There was significant difference in blood urea among the groups
(p=0.03) and in post hoc comparison the main difference was observed in the compound II with 20
mg/Kg concentrations (p=0.08). The mean final score observed for liver injury (mean range 2–3.5) and
kidney injury (2.5–3) are suggestive of less pronounced effect on both liver and kidney. Conclusion:
The Piroxicam sulfonated derivatives show minimal and reversible toxic effects on liver and kidney
after 2 weeks treatment.

Keywords: Piroxicam, Hepatotoxicity, Nephrotoxicity

INTRODUCTION
Globally, about 20% of the population suffers some type
of pain.1 Pain can be either acute or chronic depending
on the duration.2 Non-Steroidal Anti-inflammatory
Drugs (NSAIDs) and narcotic analgesics are most
commonly used drugs for management of both acute
and chronic pain worldwide.3 Benefits associated with
use of NSAIDs over opiates are it has less chances of
drug abuse with good efficacy.4 These drugs have good
potency and are in use in clinical practice since long.
NSAIDs are generally prescribed to relieve pain due to
chronic conditions such as osteoarthritis and other
rheumatologic and arthritic conditions.5 However,
prolonged use of NSAIDs are associated with many
complications such as gastrointestinal, respiratory and
cardiovascular problems. Hypersensitivity reactions can
occur with NSAIDs use6, along with hepatotoxicity7 and
nephrotoxicity.8 Due to multiple side effects of this class
of pain relieving drugs new pharmacotherapy are in
practice these days.

Piroxicam is a type of NSAID belonging to the
group of oxicam that has shown to have high
permeability and low solubility. Piroxicam is nowadays
commonly used for the treatment of pain in conditions
such as dysmenorrhea, musculoskeletal pain, rheumatoid arthritis and osteoarthritis due it longer
duration of action.9 Nevertheless, oxicam group is
preferred over other NSAIDs but these drugs are not
spared from related side effects. Among the main
reasons for withdrawal of drugs from market are due to
their hepatic and renal toxicity.10 Therefore, minimizing
the adverse effects of NSAIDs can further improve the
safety and increase their use. The adverse effects of
these drugs are studied in animal models by analysing
the serum biomarkers and histomorphological
evaluations.

In order to minimize the risks associated with
use of NSAIDs, Biology Oriented Drug Synthesis
(BIODS) have introduced/synthesized Sulfonated
Piroxicam Derivatives (SPD) as a new
pharmacotherapy. The anti-nociceptive activity of SPDs
have been assessed in animal model
reasons for withdrawal of drugs from market are due to
their hepatic and renal toxicity.10 Therefore, minimizing
the adverse effects of NSAIDs can further improve the
safety and increase their use. The adverse effects of
these drugs are studied in animal models by analysing
the serum biomarkers and histomorphological
evaluations.

In order to minimize the risks associated with
use of NSAIDs, Biology Oriented Drug Synthesis
(BIODS) have introduced/synthesized Sulfonated
Piroxicam Derivatives (SPD) as a new
pharmacotherapy. The anti-nociceptive activity of SPDs
have been assessed in animal model
reasons for withdrawal of drugs from market are due to
their hepatic and renal toxicity.10 Therefore, minimizing
the adverse effects of NSAIDs can further improve the
safety and increase their use. The adverse effects of
these drugs are studied in animal models by analysing
the serum biomarkers and histomorphological
evaluations.
hepatotoxic and nephrotoxic effects of SPD in albino rats after 2 weeks of treatment.

MATERIAL AND METHODS

This was an experimental study carried out at the Institute of Basic Medical Sciences (IBMS), Khyber Medical University (KMU) Peshawar, Pakistan after obtaining approval of the Institutional Review Board of KMU. All the procedures were carried out in accordance with the ethical guidelines approved by the ethical committee.

Two compounds of SPD were used in current study. The chemical structures of both compounds are as follows:

Compound I (white colour): ‘2-methyl-1, 1-dioxo-3-[pyridin-2-ylamino] carbonyl]-1,2-dihydro-111, 2-benzothiazin-4-yl 2,4-dichlorobenzenesulfonate’.

Compound II (yellow colour): ‘2 -methyl-1, 1-dioxo-3-[pyridin-2-ylamino] carbonyl]-1, 2, 3, 8a-tetrahydro-111, 2-benzothiazin-4-yl 4-chlorobenzenesulfonate’.

These compounds were synthesized and provided in powdered form by Department of Pharmacy, University of Peshawar. Injectable solutions of drugs were prepared by mixing compounds in distilled water to form known concentration and administered according to body weight.

A total of 24 healthy albino rats weighing between 150 to 250 grams were purchased from animal house facility at KMU. Afterwards, they were randomly divided into 5 groups; including 4 experimental and 1 control group. Group I and II received compound I in concentration of 10 mg/Kg and 20 mg/Kg body weight respectively. Group III and IV received compound II in concentration of 10 mg/Kg and 20 mg/Kg body weight respectively. Group V was control group that received normal saline. Drugs were administered through the intraperitoneal route in accordance with the body weight and all animals were in optimal conditions with a 12 hours dark and light cycle with food and water provided ad libitum.

After 14 days of treatment, all rats were anaesthetized with injection sodium thiopental (60 mg/Kg intraperitoneal). Blood samples were collected via aseptic procedure through cardiac puncture and animals were sacrificed through cervical dislocation. Blood was centrifuged at 3,000 rpm for 20 minutes to obtain serum and stored at -80 °C. Serum was analysed for Blood Urea (Urea), Serum Creatinine (Creat), serum Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and total serum bilirubin (TSB) using standard kits (Merck) via Micro Lab 300. For histological evaluation, liver and kidneys were dissected. These tissues were fixed in 10% neutral formalin solution and processed in automated tissue processor into paraffin embedded tissue blocks. Four micrometre thin sections were cut and stained by eosin and haematoxylin stain for histopathological evaluation using the criteria done by Gokakin et. al.13 Statistical analysis was performed using SPSS-22. All data were checked for normality using Kolmogorov-Smirnov and Shapiro-Wilk tests and histograms, and were normally distributed. Data were presented as Mean±SD. Control and different groups (compound and doses) were compared by ANOVA, with Tukey post hoc testing for individual comparison.

RESULTS

Weight of all the animals was recorded at start and end of 14 days treatment. Weight gain was observed only in the control group during the 2 weeks period while it almost remained similar in the experimental groups (Table-1).

The biochemical parameters of Liver and Renal functions were analysed for all the groups at the end of 14 days of treatment. In comparison of LFTs, statistically significant difference was observed in ALP between the groups (p=0.004). In comparison of RFTs, only blood Urea levels were significantly different between the groups (p=0.03) (Table-2). No significant difference was observed in serum Creatinine levels and TSB between groups (Table-2).

The liver and kidney morphology was assessed using the Gokakin et al scoring system ranging from 0 to 14.13 The mean score of histopathological changes after 14 days of intervention are shown in Table-3. In liver histology, hyperaemia, haemorrhage, mononuclear cell infiltration, vacular degeneration along with cloudy swelling of hepatocytes and necrosis were checked in all groups. The changes were more marked in higher dosage concentrations in both compound I and II in comparison to control group. Significant difference was mainly observed as necrosis of the liver tissue. Multiple comparisons showed significant difference in controls versus group II (p=0.02) and group IV (p=0.02). In kidneys histology; hyperaemia, haemorrhage, mononuclear cell infiltration, necrosis of tubular epithelium, tubular epithelial degeneration, and glomerular mesangial cell hyperplasia were assessed. There were mainly increased hyperaemia observed in treatment with both compounds at higher concentration, i.e., controls vs group II (p=0.02) and controls vs group IV (p=0.02).

Table-1: Weights in each group of animals at day 0 and day 14 of experiment

<table>
<thead>
<tr>
<th>Weight</th>
<th>Control</th>
<th>Gp I</th>
<th>Gp II</th>
<th>Gp III</th>
<th>Gp IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>230±22.73</td>
<td>196.5±72.83</td>
<td>230±12.02</td>
<td>179.5±44.54</td>
<td>230±35.35</td>
</tr>
<tr>
<td>Day 14</td>
<td>243±15.75</td>
<td>193.5±30</td>
<td>227±11.3</td>
<td>178±43.84</td>
<td>226±33.23</td>
</tr>
</tbody>
</table>

All values are in grams (Mean±SD)
Table-2: Biochemical parameters between control and different experimental groups after 14 days of treatment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (IU/L)</td>
<td>29.5±3.42</td>
<td>31.5±3.54</td>
<td>31.5±2.12</td>
<td>33±1.41</td>
<td>37±1.42</td>
<td>0.143</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>210±15.12</td>
<td>231±14.14</td>
<td>237±13.43</td>
<td>231.5±16.26</td>
<td>235±9.89</td>
<td>0.213</td>
</tr>
<tr>
<td>ALP (IU/L)</td>
<td>210.25±14.89</td>
<td>220±18.38</td>
<td>223±8.49</td>
<td>287±28.28</td>
<td>348±55.15</td>
<td>0.004</td>
</tr>
<tr>
<td>TSB (mg/dl)</td>
<td>0.45±0.13</td>
<td>0.45±0.07</td>
<td>0.45±0.07</td>
<td>0.5±0.141</td>
<td>0.55±0.07</td>
<td>0.830</td>
</tr>
<tr>
<td>Urea (mg/dl)</td>
<td>20.75±3.5</td>
<td>26.5±2.12</td>
<td>29.2±2.83</td>
<td>20.5±2.12</td>
<td>29.2±8.3</td>
<td>0.032</td>
</tr>
<tr>
<td>Creat(mg/dl)</td>
<td>0.35±0.06</td>
<td>0.35±0.07</td>
<td>0.45±0.07</td>
<td>0.4±0.14</td>
<td>0.5±0.14</td>
<td>0.208</td>
</tr>
</tbody>
</table>

Table-3: Mean histopathological scoring of liver after 14 days of treatment

<table>
<thead>
<tr>
<th>Liver score</th>
<th>Control</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperaemia (1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.311</td>
</tr>
<tr>
<td>Cloudy swelling of hepatocyte (1)</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0.311</td>
</tr>
<tr>
<td>Vascular degeneration (2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.311</td>
</tr>
<tr>
<td>Mononuclear cell infiltrations (2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Necrosis in 1-3 hepatocytes (2)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.008</td>
</tr>
<tr>
<td>Necrosis in >3 hepatocytes (3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Haemorrhage (3)</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>0.311</td>
</tr>
<tr>
<td>Total (14) Mean±SD</td>
<td>0±0</td>
<td>2.5±1.414</td>
<td>3.5±2.12</td>
<td>2.5±0.707</td>
<td>3.5±1.414</td>
<td></td>
</tr>
</tbody>
</table>

Table-4: Mean histopathological scoring of kidney after 14 days of treatment

<table>
<thead>
<tr>
<th>Kidney score</th>
<th>Control</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperaemia (1)</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>Glomerular space expansion (1)</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0.071</td>
</tr>
<tr>
<td>Glomerular mesangial cell hyperplasia (2)</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.071</td>
</tr>
<tr>
<td>Tubular epithelial degeneration (2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.381</td>
</tr>
<tr>
<td>Mononuclear cell infiltrations (2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0.103</td>
</tr>
<tr>
<td>Tubular epithelial necrosis (3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Haemorrhage (3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Total(14) Mean±SD</td>
<td>0±0</td>
<td>2.5±2.12</td>
<td>3±1.14</td>
<td>2±0.712</td>
<td>3±0.14</td>
<td>-</td>
</tr>
</tbody>
</table>

DISCUSSION

The concept of BIODS is relatively new that is used for the exploration of medicines from advance medicine. To identify new bioactive small molecules as described in literature. The NSAID piroxicam belongs to the oxicam class according to the chemical classification of drugs that is widely used these days. Main advantages are its prolonged life and lesser adverse effect on the stomach causing peptic ulcer. The inflammatory and pain causing COX-2 receptors are selectively blocked via the enolic component of the piroxicam. SPD are derivatives of the piroxicam. Analgesics synthesized by the BIOS recently. These compounds were also found to have potent analgesic activity and were found to be safe.

The compound had been tested in animal models for its acute toxicity. In the following study, two sulphonated piroxicam derivatives were tested in different concentration to test their effects on kidney and liver after 14 days of daily injections in albino rats. Raised serum levels of ALP were observed when drug was used in higher concentration, i.e., 20 mg/Kg body weight. However, serum levels of other biochemical parameters (ALT, AST and TSB) were comparable between experimental and control groups. This finding suggests that both drug might be safe when used in lower doses and need to be used with caution in higher doses. Similar observations are reported in our previous study suggesting slightly more damaging effects after 7 days of these compound use. The findings were further confirmed by histological evaluation of these drugs.

Similar reports are found in literature for different analogues of NSAIDs. The findings of biochemical parameters were also checked through histology of liver. The histopathological score of liver and kidney damage was significantly raised (p<0.05) in animals treated in higher concentrations (20 mg/Kg body weight dose) for 14 days as compared to control rats. Similar findings were observed previously after 7 days treatment with SPD.

Liver and kidneys are the major organs responsible for drug metabolism and therefore mainly affected by the toxic effects. Different liver enzymes are present in cytoplasm of liver cells and damage causes increased levels in blood. Polyunsaturated fatty acids of endoplasmic reticulum in the liver cells are damaged by reactive free radicals produced by drug and toxin metabolism. These in turn leads to rise in the hepatic enzymes in serum; in accordance with the cellular damage. To counteract the toxic effects of drugs ROS (reactive oxygen species) are excessively generated and the antioxidant reserves deplete drastically. The production of excessive amount of ROS can also lead to nucleic acid damage.
Figure 1: Photomicrographs of Liver Parenchyma.

a. & b. Liver parenchyma of normal control rat (arrow showing portal triad) c. Liver parenchyma of group II after 14 days of SPD treatment (arrow shows necrosis) d. Liver parenchyma of group II after 14 days of SPD treatment (arrow shows haemorrhage) e. Liver parenchyma of group III after 14 days of SPD treatment (arrow shows haemorrhage) f. Liver parenchyma of group IV after 14 days of SPD treatment (arrow shows necrosis).
Figure-2: Photomicrographs of Liver Parenchyma.

a. & b. Histology of kidney parenchyma in normal control rats c. Kidney Histology of group I after 14 days of SPD treatment (arrow shows hyperemia) d. Kidney histological findings in group II after 14 days of SPD treatment (arrow shows mononuclear cell infiltrations) e. Kidney histological findings in group III after 14 days of SPD treatment (arrow shows haemorrhage) f. Liver parenchyma of group IV after 14 days of SPD treatment (arrow shows mesangial space expansion)
This can further lead to inactivation of sulfhydryl antioxidants, lipid peroxidation of cell membrane and inhibition of DNA repair. It is well established that hepatotoxicity is one of the common reason for withdrawal of drugs from markets despite preclinical and clinical trials.

One of the first response to cell injury is the cytoplasmic vacuolation of the liver and kidney cells in all type of injuries. It is the unique ability of hepatic cells to regenerate even if the damage occurs at the mitochondrial levels. Furthermore, it is observed that liver cells in rats can proliferate and there is auto reversal of damage within two weeks after cessation of toxins exposure. The results of our study after 14 days use of SPD when compared to 7 days exposure suggest the ability of liver for regeneration after injury, which is a peculiar property of liver cells. Similarly, drugs can have toxic effects on kidneys and results in the increased levels of blood urea, serum creatinine and uric acid due to renal cell damage. Kidneys are also responsible for homeostasis of the body and helps in metabolism of many toxins and drugs. Many toxins and drugs such as xenobiotics and their metabolites are removed from the body via kidneys. It is observed that kidney tubules have great capability to regenerate damage cells in a short period of time in animal models. The results of our study suggest that the drug is comparatively more safer when used in lower concentrations.

STUDY LIMITATIONS
We could not include positive control which would have made comparisons more reliable whether the damage seen in this study was comparable to other standard NSAIDs. Only two dose concentrations were used. However, higher dose concentrations and longer duration studies would provide a broader picture of the SPD. Furthermore, the sample size was small for the biochemical comparisons.

CONCLUSION
Sulphonated piroxicam derivatives can lead to focal degenerative changes along with biochemical derangements in both liver and kidneys when used in higher concentrations. However, these changes seem to be reversible and further larger pre -clinical studies are recommended for clinical use.

REFERENCES

28. Farooq Y, Khan MA, Farooq MA. Liver function tests, red cell indices and oxidative stress in healthy male Sprague Dawley rats.

Address for Correspondence:
Dr. Shafiq Ahmad Tariq, Institute of Basic Medical Sciences, Khyber Medical University Peshawar, Pakistan.
Email: shafiq.ibms@kmu.edu.pk

Received: 18 Apr 2019 Reviewed: 12 Sep 2019 Accepted: 16 Sep 2019